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SUMMARY

Indium phosphide (InP) solar cells are more radiation resistant than gallium arsenide and silicon solar

cells, and their growth by heteroepitaxy offers additional advantages leading to the development of lighter,

mechanically strong, and cost-effective cells. Changes in heteroepitaxial InP cell efficiency under 0.5- and

3-MeV proton irradiations have been explained by the variation in the minority-carrier diffusion length. The

base diffusion length versus proton fluence has been calculated by simulating the cell performance. The dif-

fusion length damage coefficient K, has also been plotted as a function of proton fluence.

INTRODUCTION

Indium phosphide (InP) solar cells have demonstrated better radiation resistance than gallium arsenide

(GaAs) and silicon (Si) cells (refs. 1 and 2), but the high cost of InP wafers inhibits their use for large space

power applications. The cost could be reduced by developing high-efficiency heteroepitaxial InP solar cells on
lower cost substrates. Heteroepitaxy may also lead to the development of lighter and mechanically strong cells,

which would offer additional advantages for their use in space.

InP cells have been grown on Si and GaAs substrates (refs. 3 to 5), but their efficiencies have to be
increased in order for them to be viable for space use. Calculations have shown that misfit dislocations, caused

by lattice mismatch and differential thermal expansion, greatly influence the heteroepitaxial InP solar cell per-

formance (ref. 6). Transmission electron microscopy of heteroepitaxial InP cell structures has shown (refs. 7

and 8) a high density of threading dislocations and other defects.

We have been studying the effect of proton and electron (refs. 9 and 10) irradiations on heteroepitaxial

InP cells. This work reports on the effect of 0.5- and 3.0-MeV proton (fluence, 10_ to 10 '3 cm -2) irradiations

on the base diffusion length of InP cells grown on GaAs substrates with I_Ga,.xAs graded intermediate layers.

The diffusion length damage coefficient KL has also been calculated.

EXPERIMENTAL PROCEDURE

The cells were fabricated at the Spire Corporation under a contract to NASA Lewis Research Center.

The ceils were grown by metalorganic chemical vapor deposition on GaAs substrates with graded InGaAs inter-

mediate layers. The composition of the last layer was In0._Ga0.47As; this ]attice match to InP helped to reduce

the threading dislocations. These n'p cells had a 30-nm-thick emitter with an area of l cm 2. The emitter and

base doping concentrations were 2x l0 TM cm --_and 3× l0 '_ cm -°_,respectively. Figure l shows the heteroepitaxial
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InPcell structure.Cellsweremeasuredbeforeandafterprotonirradiations at NASA Lewis under air-mass-zero

(AM0) spectrum conditions at 25 °C. Four cells were radiated for studying the effects of 0.5- and 3-MeV

protons.

APPROACH, RESULTS, AND DISCUSSION

Computer simulations using the PC-ID numerical code (ref. 11) were performed to calculate the effect of

proton irradiations on cell performance. PC-ID is a quasi-one-dimensional program, based on a finite-element

approach, for solving the semiconductor device transport equations.

Available heteroepitaxial InP cell process and material parameters were used. Calculated current-voltage

(I-V) characteristics were fitted to the measured average results of the four cells under AM0 spectrum before

proton irradiations. Minority-carrier diffusion lengths and series resistance were varied to achieve a match

with the measured cell parameters. Surface recombination velocities of 107 cm/sec were assumed. A value of
8× 10_ cm -a for intrinsic carrier concentration was used in this work. Figure 2 shows the calculated I-V charac-

teristics of the unirradiated cell and the measured data points. From this figure it is clear that the agreement

between theoretical and experimental results was quite good and formed the baseline for further cell simulations.

A 0.5-1am base diffusion length was required to achieve the results shown in figure 2.

Figure 3 shows the effect of fluence on cell efficiency for 0.5- and 3-MeV protons. The 0.5-MeV pro-
tons appear to produce more damage than the 3-MeV protons as indicated by the decrease in efficiency. The

proton ranges of 4.8 and 69 gtm, respectively, for the energies of 0.5 and 3 MeV suggest that most of the dam-

age occurred in the base region and beyond. It was assumed that the shallow (30 nm) emitter region of the

heteroepitaxial loP cell was unaffected by the protons considered in this work.

The computer simulations suggest that the decrease in cell performance with proton t'/uence (see fig. 3)

was primarily due to the decrease in the base diffusion length. The simulations were made to fit the cell
efficiency at various fluences for 0.5- and 3-MeV protons by varying the base diffusion length. Figure 4 shows

the base diffusion length as a function of proton fhence. The effects of carrier removal in the base have been

included. The base doping concentration was accordingly modified in the calculations, on the basis of the

measured number of carriers removed in the cells considered in this work at the various 0.5- and 3-MeV proton

fluences (ref. 10). Figure 4 demonstrates that 0.5-MeV protons damaged the InP cell base region more than

3-MeV protons. The heteroepitaxial InP cell efficiencies under 0.5- and 3-MeV proton irradiations have been

explained by the variation in the base diffusion length.

The damage caused by the electron and proton irradiations of a semiconductor device is characterized by

a damage coefficient. The diffusion length damage coefficient KL is defined as (ref. 12)

(I)

or

(2)

where L,_ and L¢ are, respectively, the minority-carrier diffusion lengths before and after irradiation, Nrj and crj
are the concentration and capture cross section, respectively, of thejth defect, D is the minority-carrier dif-
fusivity, v is the thermal velocity, and dOis the fluence.
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Figure 5 shows the calculated KL as a function of fluence for 0.5- and 3-MeV protons. The diffusion length

damage coefficient is almost constant with proton fluence, 3x 10.4 (at 0.5 MeV) and 3x 10 -s (at 3 MeV). These

are the first reported calculations of KL under proton irradiations of InP solar cells. Using a similar relation

(eq. (2)), Yamaguchi and Ando (ref. 13) have obtained the diffusion length damage coefficient KL for 1-MeV

electron irradiation as a function of impurity concentration.

SUMMARY OF RESULTS

Heteroepitaxial indium phosphide (Imp) solar cells offer a great potential for space power applications. The

cell efficiency changes due to 0.5- and 3-MeV proton irradiations have been explained by the variation of the

base diffusion length. The 0.5-MeV protons influence the cell performance more strongly than the 3-MeV pro-

tons. Computer simulations were used to determine the variation of the base diffusion length with proton

fluence for both the energies. The diffusion length damage coefficient KL has been calculated for the first time
and is constant with fluence. The damage coefficient for 0_-MeV protons is an order of magnitude higher than

that for 3-MeV protons. The effect of carrier removal has been considered in the calculations.
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Figure 3.--Changes in AM0 conversion efficlancy of heteroepl-
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